skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Granados, Eduardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Shock experiments are widely used to understand the mechanical and electronic properties of matter under extreme conditions. However, after shock loading to a Hugoniot state, a clear description of the post-shock thermal state and its impacts on materials is still lacking. We used diffraction patterns from 100-fs x-ray pulses to investigate the temperature evolution of laser-shocked Al–Zr metal film composites at time delays ranging from 5 to 75 ns driven by a 120-ps short-pulse laser. We found significant heating of both Al and Zr after shock release, which can be attributed to heat generated by inelastic deformation. A conventional hydrodynamic model that employs (i) typical descriptions of Al and Zr mechanical strength and (ii) elevated strength responses (which might be attributed to an unknown strain rate dependence) did not fully account for the measured temperature increase, which suggests that other strength-related mechanisms (such as fine-scale void growth) could play an important role in thermal responses under shock wave loading/unloading cycles. Our results suggest that a significant portion of the total shock energy delivered by lasers becomes heat due to defect-facilitated plastic work, leaving less converted to kinetic energy. This heating effect may be common in laser-shocked experiments but has not been well acknowledged. High post-shock temperatures may induce phase transformation of materials during shock release. Another implication for the study is the preservability of magnetic records from planetary surfaces that have a shock history from frequent impact events. 
    more » « less
  2. The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets. 
    more » « less
  3. Free, publicly-accessible full text available December 1, 2026
  4. null (Ed.)
    Natural kamacite samples (Fe92.5Ni7.5) from a fragment of the Gibeon meteorite were studied as a proxy material for terrestrial cores to examine phase transition kinetics under shock compression for a range of different pressures up to 140 GPa. In situ time-resolved X-ray diffraction (XRD) data were collected of a body-centered cubic (bcc) kamacite section that transforms to the high-pressure hexagonal close-packed (hcp) phase with sub-nanosecond temporal resolution. The coarse-grained crystal of kamacite rapidly transformed to highly oriented crystallites of the hcp phase at maximum compression. The hcp phase persisted for as long as 9.5 ns following shock release. Comparing the c/a ratio with previous static and dynamic work on Fe and Fe-rich Fe-Ni alloys, it was found that some shots exhibit a larger than ideal c/a ratio, up to nearly 1.65. This work represents the first time-resolved laser shock compression structural study of a natural iron meteorite, relevant for understanding the dynamic material properties of metallic planetary bodies during impact events and Earth’s core elasticity. 
    more » « less